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SUMMARY 

Two closely re la ted  numerical methods which employ operations ‘tables 
have been developed and used i n  the calculation of the buckling load of 
a monocoque cylinder subjected t o  pure bending. 
assumption of a simplified s t ructure  which includes only the most highly 
compressed portion of the cylinder. 
14-row determinant, whereas the second method requires the solution of 
a single 10-row determinant. 
widely different  charac te r i s t ics  were calculated by these methods. 
Reasonable agreement with experiment was obtained. 

They are’based on the 

The f irst  method makes use of a 

The buckling loads of three cylinders with 

A procedure similar t o  the f irst  method was developed f o r  the cal- 
culation of the buckling load of a cylinder with a cutout. 
experimental check was obtained. 

A l imited 

INTRODUCTION 

The calculation of the buckling loads of reinforced monocoque 
cylinders i s  a problem of some importance i n  airplane s t r e s s  analysis. 
Existing theoret ical  methods f o r  determining such buckling loads, 
including ener&y methods, are, i n  general, lengthy and d i f f i c u l t  t o  apply. 
I numerical procedure i s  therefore developed i n  t h i s  report i n  order t o  
simplify the calculations. 

Southwell’s relaxation procedure (reference 1) and, i n  general, methods 
which make use of an operations tab le  (see appendix A )  have been success- 
fu l  i n  the solution of a variety of stress-distribution problems. It w a s  
therefore natural  tha t  an attempt be made t o  adapt these methods t o  
buckling-load calculations. In  reference 2 three closely related methods 
f o r  determining the buckling load from an operations table  were established 
and de,scribed. 

Convergence Methods. 

A l imited experimental check v:as a l s o  obtained. I n  refer- 

I n  t h i s  paper, the first two of these methods, along 
1 ence 2 the three methods were called the Determinant, Energy, and 
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with s l i gh t  modifications, a re  used t o  calculate the buckling load i n  
pure bending of four monocoque cylinders with widely different  charac- 
t e r i s t i c s ,  one of which had a symmetric cutout on the compression side. 
It was.found tha t  the buckling loads could be conveniently calculated 
when the actual  cylinder was replaced by a simplified structure pre- 
serving the main character is t ics  of the or iginal  cylinder. 

A twofold purpose i s  thus f u l f i l l e d  by t h i s  investigation. I n  the 
first place, a method which i s  f a i r l y  short  and reasonably accurate i s  
developed f o r  the calculation of the buckling load of a monocoque cylinder. 
Secondly, a fur ther  experimental check of the  methods of reference 2 i s  
afforded by a comparison of the theoret ical  and experimental buckling 
loads f o r  the cylinders considered. 

The authors a re  indebted t o  D r ,  N. J. Hoff f o r  h i s  advice and help- 
fu l  cri t icism, and t o  Messrs. J. Mele, B. Erickson, and E.  B. Beck.for 
t h e i r  par t  i n  the experimental phase of the investigation. The work was 
sponsored by and conducted with f inancial  a id  from the National Advisory 
Committee f o r  Aeronautics. 

CALCULATION OF BUCKLING LOAD OF CYLINDERS WITHOUT CUTOUT 

Methods of Calculation 

The buckling loads were calculated f o r  three cylinders, the charac- 
t e r i s t i c s  of which are given i n  tab le  I and f igure 1. 
calculation which appeared most convenient are  described below. 
methods y ie ld  the load 
instant  of buckling of the cylinder as a whole. 
applied bending moment can be calculated, provided the s t r e s s  dis t r ibut ion 
is  known. 
the next section. Basic theoret ical  considerations underlying the cal- 
culations may be found i n  reference 2 and i n  appendix A .  
example i s  given i n  appendix B. 

The methods of 
These 

P i n  the most highly compressed s t r inger  a t  the 
From t h i s  load the t o t a l  

The va l id i ty  and the accuracy of the methods are  discussed i n  

A numerical 

Simplified-cylinder solution.- Let the cylinder under consideration 
be replaced by the simplified structure of f igure 2 .  The operations 
tab le  corresponding t o  t h i s  s t ructure  i s  tha t  presented i n  table  11. 
symbols which appear i n  t h i s  tab le  a re  defined i n  appendix C.  
be noticed tha t  the operations table  i s  symmetrical about i t s  main diagonal. 
The buckling load 
sented by tab le  I1 equal t o  zero. 
evaluating numerically the determinant f o r  several values of 
the determinant values against 
determinant i s  zero. If the load P i s  lower than the f irst  buckling 

A l l  
It should 

P has the value which w i l l  make the determinant repre- 
It may be most conveniently obtained by 

P, and reading off the load a t  which the 
P, p lot t ing 
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load, the determinant w i l l  be posit ive (because it contains an even 
number of rows; see reference 2 ) .  
the  method of reference 3, t ha t  portion of the so-called “auxiliary 
matrix” which corresponds t o  the first nine rows of tab le  I1 need be 

If the determinants are evaluated by 

- considered only once, since it i s  independent of the load P. 

Solution with assumed displacements.- The above method can be s im-  
p l i f i ed  by assuming the  following expressions f o r  the r ad ia l  displace- 
ments r and the rotations % of the most highly compressed s t r inger  
(s t r inger  1, f ig .  2 ) :  

(1) 
r = sinS(nx/6L) 

3 = (dr/dx) = (5n/6L) sinb(nx/6L) cos (nx/6L) 

i n  which the maximum r ad ia l  displacement i s  taken as unity, and L i s  
the ring spacing. 
x = L, 2L, and 3L. The determinant i s  then reduced t o  t h a t  given i n  
table  111. 
symmetry. 
the f i r s t  method given above. Since, however, only the  element i n  the 
lower right-hand corner i s  a function of the load the determinant 
w i l l  take the form [K + f(kL)], where K i s  a constant not dependent 
on P, 

A t  rings B, C, and D, respectively (see f i g .  2) ,  

I n  the presentation of t h i s  tab le  advantage was taken of 
The buckling load may be obtained from t h i s  determinant by 

P, 

f (kL)  

r i g id i ty  of the s t r inger  and i t s  effective width of sheet. The value 
of  kL 
from the equation 

i s  given i n  tab le  111, and (EI)s t r r  i s  the r a d i a l  bending 

a t  buckling makes the determinant vanish and may be obtained 

f (kL)  = -K ( 3 )  

A curve of f (kL) against kL i s  given i n  f igure 3 and may be used t o  
solve t h i s  equation i n  a convenient manner. 
load of a cylinder can be obtained f romthe  solution of a single 10-row 
determinant 

Consequently the buckling 

It i s  useful t o  note than an upper and lower l i m i t  may be found fo r  
the value of kL a t  buckling, such tha t  

1.46 < kL < 4.49 
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The value 4.49 corresponds t o  the  lowest load a t  which a main-rdiagonal 
element ( i n  the  tenth o r  eleventh rows) of t ab le  I1 becomes zero. The 
value 1.46 is  the  value a t  which f (kL) = 0 
depends on the  assumption of equations (1). 

and i s  approximate since it 

It may be noticed t h a t  both methods require the evaluation of a t  
l e a s t  one determinant. 
out by the  method of reference 3. 
application of t h i s  method i n  the  present problem may be useful: 

It i s  suggested t h a t  t h i s  evaluation-be carr ied 
The following remarks concerning the  

(1) The operations tab le  i s  symmetric about i t s  main diagonal 

( 2 )  The value of t h e  determinant i s  equal t o  the  product of the 
main-diagonal elements of the auxi l iary matrix (defined i n  
reference 3) 

( 3 )  The determinant w i l l  be equal t o  zero when the  l a s t  main- 
diagonal element of the auxi l iary matrix vanishes (see 
appendix A)  

Discussion of Methods 

The methods outlined i n  the preceding sect ion are based on the 
simplified s t ructure  of f igure  2. 
the  choice of t h i s  s t ructure  and of the methods of calculation: 

The following considerations underlie 

(1) The most highly compressed s t r inger  was considered of paramount 
importance a t  buckling, s o  t h a t  it w a s  thought permissible t o  neglect 
a l l  other s t r ingers  i n  these approximate calculations.  This i s  equivalent 
t o  considering the  most highly compressed s t r inger  as  a column e l a s t i c a l l y  
supported by the  rings and sheet. 
represented by the  r ing and sheet influence coeff ic ients  i n  the  operations 
tab le  (appendix B)  . 

The e l a s t i c i t y  of the  supports i s  

( 2 )  Points on the tension side of the cylinder w i l l  undergo only 
negligible displacements and hence may be considered fixed. 
are  therefore assumed t o  continue up t o  a point, near the  tension side, 
900 away f romthe  most highly compressed s t r inger ,  and t o  be r ig id ly  
f ixed  there ( f ig .  2 ) .  

The rings 

( 3 )  It would seem natural  t o  continue the  sheet up t o  the same point 
as the  rings. Because a l l  s t r ingers  except the  most highly compressed 
one have been neglected, t h i s  would imply a single panel of sheet i n  
each bay, extending over 90°. 
considering each panel with i t s  edge reinforcements as a uni t  i n  which 
only the  corner points have independent freedom of motion (see, e.g., 
reference 4). 
determined by the  displacements of i t s  corners, with no poss ib i l i ty  of 

The operations table ,  however, i s  s e t  up 

Therefore the action of the 90° sheet panel would be 
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intermediate adjustment. 
be great ly  exaggerated. 
the buckled sheet (reference 5) because of. the larger  angle subtended 
would not provide a suf f ic ien t  reduction i n  the shear r ig id i ty .  
sheet panel w a s  therefore taken t o  be smaller, the  natural  stopping point 
being the posit ion of the s t r inger  ne i t  t o  the most highly compressed 
s t r inger  i n  the  actual  cylinder. 
additional s t i f fnes s  t o  the most highly compressed s t r inger  i s  considered. 
This appears consistent with the assumption t h a t  all other s t r ingers  may 
be neglected. 
considered i n  each r ing a t  the intersect ion with the f r ee  edge of the  
sheet. 
there, the consequent reduction i n  the  influence coefficients would i n  
general be negligibly small. 

Consequently the r ig id i ty  of the panel would 
The decrease i n  the effect ive shear modulus of 

The 

, 

Thus only the sheet which provides 

A point with independent freedom of motion w a s  therefore 

It may be remarked tha t ,  i f  the  rings were t o  be terminated 

I 

(4) The length of the cylinder w a s  considered constant and equal t o  
six t i m e s  the ring spacing. For the three cylinders investigated, PIBAL 
cylinder 10 and GALCIT cylinders 25 and 65 ( f ig .  l), t h i s  corresponds t o  
1.5, 1.5, and 1 . 2  times the respective diameters. For the fuselage of a 
large modern transport  t h i s  length would be approximately equal t o  the 
diameter. 
r e su l t s  presented i n  the references given: 

The following tab le  may be s e t  up on the basis of experimental 

Loading 

Compression 

Pure bending 

Limiting Increase i n  buckling load 
value of a t  lower value of L'/D Reference 

1.5 6 a t  L'/D = 1.0 6 

L I/D (percent ) 

2.0 1 2  a t  L I / D  = 1.2 7 

The buckling load i s  pract ical ly  independent of the length i f  the length- 
to-diameter r a t i o  
given. 
shorter than the l imit ing length are  given i n  the  t h i r d  column of the 
above table .  
somewhat shorter than the l imit ing length; the e r ror  caused by t h i s  may 
be estimated with the a i d  of the above tab le  t o  be a t  most 10 or 15 per- 
cent of the buckling load of a cylinder longer than the  l imiting length. 
The e f fec t  of the length w a s  investigated i n  some d e t a i l  with test 
cylinder 25 of the GALCIT se r ies  (reference 8). The buckling load f o r  
t h i s  cylinder w a s  calculated considering different  numbers of bays and 
the r e su l t s  a re  shown i n  f igure 4. It may be seen tha t  the calculated 
buckling loads approach some constant value i n  what appears t o  be an 
asymptotic variation and tha t  the difference i n  the buckling loads 
obtained considering six or eight bays i s  small. 
the  small improvement i n  accuracy given by a longer structure did not 
warrant the increased amount of work required t o  obtain it. 

L1/D i s  equal t o  o r  l a rger  than the l imiting value 
Examples of the  increase i n  the buckling loads f o r  cylinders 

The length assumed i n  the calculation w i l l  be i n  general 

. It was concluded tha t  
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. (5) The buckling load was calculated with the a id  of the simplified 
structure f o r  t e s t  cylinders 25 and 65 of the GALCIT se r ies  (reference 8) 
and f o r  cylinder 10 of the  PIBAL ser ies  (reference 9 ) .  
were chosen because of t h e i r  widely different  character is t ics  (see f i g .  1 
and table  I).  
those of experiment are  presented i n  table  I V  and i n  f igures  4, 5, and 6, 
The calculated buckling loads may be seen t o  be consistently higher than 
the corresponding experimental values. 
are not considered excessive, however, upon comparison with the r e su l t s  
obtained e a r l i e r  a t  PIBAL by means of strain-energy methods. 
solutions (reference 10) gave be t t e r  resu l t s  than the present investi-  
gation, but required a prohibitive amount of work. 

Those specimens 

Comparisons of the  r e su l t s  of the present analysis with 

The percentage e r rors  obtained 

One of those 

(6) Approximate deflected shapes a t  buckling obtained with the a id  
of the simplified s t ructure  of f igure 2 are given i n  tab le  V f o r  the three 
cylinders investigated. The same table  also gives resu l t s  of measurements 
made on some actual  t es t  specimens a f t e r  buckling (reference 6).  It may 
be noticed tha t  f a i r  agreement has been obtained between measured and 
calculated values, s o  t ha t  an additional indirect  experimental check has 
been provided on the reasonableness of the simplified structure chosen. 
It should be kept i n  mind tha t  the measurements were taken a f t e r  the 
cylinders had buckled, and therefore may d i f f e r  from the actual displace- 
ments at the instant  of buckling. 

( 7 )  Table V a l so  shows tha t  the rad ia l  displacements r of the most 
highly compressed s t r inger  a t  buckling are closely represented by 

r = sinn(nx/6L) (4) 
where n = 4, 5, o r  6. The rotations % may be closely approximated by 

m t  = (nn/6L) sinn-’(nx/6L) cos (nx/6L) (5) 

The values obtained with 
experimental and calculated deflections, and therefore t h i s  value of n 
was chosen f o r  the solution with assumed displacements which was described 
previously. 
culated by tha t  method and was found t o  be 173Q pounds. ?he buckling load 
calculated from the simplified structure without the assumption of dis- 
placements was 1670 pounds ( f ig .  5), so t ha t  the e r ror  introduced by t h i s  
assumption i s  only 3.6 percent of the l a t t e r  value. 
chosen since it i s  the specimen f o r  which the agreement between assumed 
and actual  displacements i s  the poorest ( table V) . 
i n  t h i s  connection tha t  it was shown elsewhere (reference 2 )  t ha t  the 
methods of calculation used i n  t h i s  report are  not too sensit ive t o  e r rors  
i n  the assumed deflected shape. 

n = 5 represent a reasonable average of a l l  

A s  a check, the buckling load of GALCIT cylinder 65 was cal- 

Cylinder 65 was 

It should be remembered 
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(8) The operations tables  f o r  the simplified structure (tables I1 
and 111) may be put i n  nondimensional form by the following process. 
Divide the tenth and eleventh rows and columns by 
rows and columns (10) through (14) by the quantity 
column terms appearing i n  the  lower right-hand comer may then be writ ten 
as ( E I ) s t r r I , 3  times some function of kL. The ring influence coef- 

f i c i e n t s  s, rm, rt, and so f o r t h  are  equal t o  (EI4./d3 multiplied 
by some function of r/d (reference 11). If all rows and columns are  
divided through by 
tab le  w i l l  be a function of the four  nondimensional parameters 

L, and a l l  terms i n  
Gefftd/L. The beam- 

n -  

(EI),/d3 it will be noticed tha t  the operations 

I 

where r i s  the cylinder radius, (EI) ,  the  bending r ig id i ty  of a r ing 
i n  i t s  own plane, d the circumferential s t r inger  spacing, Geff the  
effect ive shear modulus f o r  the sheet, t the sheet thickness, and the 
other symbols have been previously defined. 
extensional deformations of the rings, respectively, a re  represented by 
the two additional parameters: 

The e f fec ts  of shearing and 

where 1, i s  the moment of i n e r t i a  of the ring cross section, A, i s  
the area of the ring, and Ar* 
cross section. 
parameters i s  i n  general negligible. 

i s  the effective shear area of the ring 
Reference 11 shows, however, t ha t  the e f fec t  of these two 

It has been shown i n  reference 1 2  t ha t  the buckling load of a mono- 
coque cylinder depends on the  parameter A .  Two additional parameters 
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were established i n  tha t  reference by physical reasoning t o  be 
E/E,-.~, where E i s  the  s t r a i n  i n  the  most highly compressed s t r inger  
at  failure and ECr i s  the  buckling s t r a i n  of a sheet panel. An experi- 
mental ver i f icat ion of the f a c t  t h a t  these parameters approximdtely 
control the buckling phenomenon i n  monocoque cylinders i s  given i n  refer- 
ence 13. 
development a re  the same as those found i n  reference 12, while the param- 
e t e r  includes the quantity since the shearing r ig id i ty  Geff 
was found i n  reference 5 t o  be closely approximated by 

r/d and 

It may be seen tha t  two of the parameters found i n  the present 

, - -  -N E / E C r  Geff - N + (1 - N)e 
GO , 

where 

N =' 0.0275 [(2rtr/d) + 1) 

and Go i s  the shear modulus of the sheet material. 

the parameters A and r are  shown i n  f igure 7 f o r  a l l  the  cylinders of 
reference 8 with r/d = 6.32. 
available so  t h a t  the posit ion of these curves i s  not def in i te ly  determined. 
It may be stated,  however, t h a t  the r e su l t s  presented do not contradict 
the va l id i ty  of the four  parameters established. 

Curves of kL, which represents the buckling load, plotted against 

An insuff ic ient  number of cylinders is  

CALCULATION OF BUCKLING LOAD OF A CYLINDER WITH A CUTOUT 

Experimental Investigation 

The methods developed previously were extended t o  include cylinders 
with cutouts. 
consisted of a t h i n  c i rcu lar  she l l  reinforced by six st r ingers  and four  ' 
evenly spaced rings was therefore constructed and tested.  
extended circumferentially f o r  90° on the compression side of the cylinder. 
Pure bending moments were transmitted t o  the ends of the cylinder through 
heavy rings which could be assumed r ig id .  
t h a t  used i n  the cylinder t e s t s  of reference 13. 
when the load i n  the most highly compressed s t r inger  (s t r inger  2 i n  f i g .  8) 
w a s  5400 pounds. 
158,000 inch-pounds. 
f igures  9 and 10. 

A cylinder with a cutout (PIBAL cylinder 82, f i g .  8) ,  which 

The cutout 

The t e s t  r i g  was the  same as 
This cylinder buckled 

This load corresponded t o  a t o t a l  applied moment of 
Photographs of the  buckling cylinder are  shown i n  
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Method of Calculation 
W 

The results of t h e  theore t ica l  investigation 
simplified methods evolved f o r  complete cylinders 

iadicated t h a t  t he  
are not sa t i s fac tory  

f o r  cylinders with cutouts. For such cylinders, the  d i s to r t ion  under 
load depends primarily on t h e  geometry of the  cutout, so  t h a t  only dis- 
placements i n  the  v ic in i ty  of the  cutout require consideration i n  t h e  
operations table .  

With consideration of the  symmetry of the  cylinder, an operations 
tab le  including only the  displacements r B 1  and rB2 and the  ro ta t ion  

%B2 
prac t ica l  purposes, t he  same as tha t  obtained through the use of an 
operations tab le  which permitted a l l  possible generalized displacements 
a t  a l l  t he  jo in t s  of t he  cylinder. 
j o in t s  i n  the  v ic in i ty  of the  cutout need be considered i n  the  operations 
tab le  w a s  j u s t i f i ed  f o r  the cylinder with a cutout. The ac tua l  experi- 
mental deflected shape of PIBAL cylinder 8 2  ( f igs .  9 and 10) shows t h a t  
the major d i s tor t ions  took place i n  the  v i c in i ty  of the cutout, and t h a t  
a l l  other j o in t s  may be assumed t o  have had zero displacements. 

(see f i g .  8) was set up. The resul t ing buckling load was, f o r  a l l  

Hence the  assumption t h a t  only t h e  

Cylinders encountered i n  practice, however, w i l l  be of a more compli- 
cated construction than PIBAL cylinder 82, and hence the  simplified 
operations t ab le  described above may not be suf f ic ien t ly  complete. 
Depending on the  s ize  of the cutout, it i s  suggested t h a t  the operations 
table  be expanded s o  as t o  include a l l  t he  jo in t s  surrounding the  par- 
t i c u l a r  cutout. 

The buckling load obtained f o r  PIBAL cylinder 82 considering only 
three generalized displacements was 8400 pounds. 
the theore t ica l  and experimental buckling loads w a s  a t t r ibuted,  mainly, 
t o  t he  inaccuracy of t he  value of the e f fec t ive  shear modulus 
i n  the  calculations.  This value was 0.71G0 and w a s  taken from equa- 
t i o n  ( 8 ) .  
compression. The sheet panels i.7 the present cylinder, however, a re  
under the act ion of combined compression and shear. No values f o r  t he  
effect ive shear modulus of curved panels under such a loading could be 
found i n  the l i t e r a t u r e ,  but, according t o  data obtained from f l a t  panels 
(reference l4), it appears t h a t  the correct value of 
considerably lower. Furthermore, as i s  shown i n  the  next section, there  
i s  reason t o  reduce the  shear modulus even fur ther .  

The discrepancy between 

used Geff 

This equation i s  based on tests on panels buckled because of 

Geff should be 

The calculations f o r  PIBAL cylinder 8 2  were therefore repeated with 
an assumed value of 
5900 pounds, which may be seen t o  be i n  good agreement with experiment. 

Geff = 0.1G0. The resul t ing buckling load was 
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Reduced Effective Shear Modulus 

If a panel of sheet i s  not i n  a buckled state, the  r e l a t ion  between 
shear stress T and shear s t r a i n  y i s  simply Hooke's l a w :  

T = GOY ( 9 )  

If the  panel i s  i n  a buckled state, a r e l a t ion  analogous t o  equation ( 9 )  
w i l l  s t i l l  hold between the  average shear stress T~~ and the average 
shear s t r a i n  yav, provided t h a t  an e f fec t ive  shear modulus Geff i s  
used i n  place of '  GO. I n  other words, 

and Geff = Go i f  the panel i s  not buckled. The value of Geff w i l l  
represent the  complex state of stress of t he  buckled panel, and w i l l  
presumably vary with panel dimensions and type of loading. 

The value of Geff i s  the  proportionali ty fac tor  between the  average 
shear stress and the average shear s t r a in .  I n  problems of i n s t ab i l i t y ,  
however, it i s  desired t o  know the  r e l a t ion  between a small increase i n  
stress d('cav) and a small increase i n  s t ra in  d ( ya, ) . This re la t ion  
w i l l  again have the  same f o r m  as equation ( 9 ) ,  i f  only a reduced effect ive 
shear modulus Geffred i s  used i n  place of Go. I n  other words, 

Thus t h i s  new modulus represents t he  resis tance the  panel w i l l  offer 
against d i s tor t ions  additional t o  those represented by yav. According 
t o  the  previous discussion, t h i s  new modulus will also depend upon the 
dimensions of the  panel and upon the  amount of shearing and compressive 
loads present. 

If equation (10) i s  wri t ten i n  d i f f e r e n t i a l  form as 

comparison with equation (11) indicates  t h a t  
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The following remarks may be made about the reduced effect ive shear 

red: modulus Geff 

(l) Geffred = G o  when the panel i s  not i n  a buckled s t a t e  

( 2 )  Geffred = Geff when the average shearing s t r a i n  i n  the panel 

i s  zero immediately'before buckling 
. %  

(3 )  Geffred = Geff when there i s  no change of shearing s t r a i n  

during buckling of the structure under consideration 

(4) Geffred < Geff i n  a l l  other cases, since i n  general the modulus 

Geff decreases with increasing shear s t r a i n  yav, so  t h a t  the second 
term i n  the right-hand side of equation (13) i s  negative 

The l a t t e r  case applies t o  the cylinder with a cutout. The low 
value assumed f o r  the shear modulus i n  the calculations i s  therefore 
plausible. 

Polytechnic Ins t i t u t e  of Brooklyn 
Brooklyn, N. P., August 31, 1948 
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APPENDIX A 

BASIC THEORY 

The procedures developed i n  t h i s  report  f o r  t he  calculation of t he  
buckling load of a monocoque cylinder are based on methods developed i n  
reference 2 which make use of an operations tab le  similar t o  t h a t  used 
i n  Southwell’s method of systematic relaxation. These methods are  out- 
l ined  here, more rigorous proofs being given i n  reference 2. Rigorous 
proofs a re  only given here f o r  some modifications of these methods which 
were not discussed i n  t h a t  reference. 

Consider several  points i n  the  s t ructure  i n  question dis t r ibuted so  
L e t  these points be numbered consecu- 

a t  j o in t  j ( a l l  j o in t s  but j being considered 

as t o  cover the  en t i r e  s t ructure .  
t i v e l y  from 1 t o  n. 
‘alized displacement x j  
ternporarily r ig id ly  f ixed)  may be denoted by aijxj .  The quantity a i j  
i s  cal led an influence coeff ic ient .  If F i  i s  the  generalized external 
force acting a t  j o in t  i, the  equilibrium condition f o r  the  i t h  jo in t  i s  

The generalized force exerted on jo in t  i by a gener- 

n 
Fi +)aijxj = o 

j =1 

provided t h a t  the  pr inciple  of superposition i s  valid.  
i s  wri t ten f o r  every j o i n t  i n  the  s t ructure ,  a s e t  of l inear  simultaneous 
equations w i l l  result with generalized displacements as unknowns. 
array, o r  matrix, of the coeff ic ients  of t h i s  s e t  of equations i s  cal led 
the  operations t ab le  and may be wr i t ten  as 

If equation (Al) 

The 

An = 

all a12 
a21 a22 . . . .  . . . .  
a i l  ai2 

“ j l  “ j 2  

an1 an2 

. . . .  

. . . .  

a l j  aln . . .  a2i  . . .  a2j . . .  azn 

. . .  a i i , .  . a i j  . . .  ain 

- a j i  * a j j  - “jn 

an i  . . .  anj  . .  

. . , a l i . .  

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  . . .  ann 

- A s  a consequence of Maxwell’s reciprocal theorem a i j  = a j i .  
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Equation (Al) represents t he  equilibrium conditions f o r  the given 
s t ructure  i n  terms of displacements. I n  general, the determinant An 
will not be equal t o  zero;  then, only one set  of displacements may be 
found which w i l l  s a t i s f y  the equilibrium conditions. If the determinant 
An 
This i s  physically possible only at neutral  equilibrium, or ,  which i s  
the  same, a t  a buckling load. This leads t o  what was cal led i n  refer- 
ence 2 t he  Determinant Method, the  basis  of which i s  the  f a c t  tha t  the  
lowest load a t  which the  determinant 
load. 

vanishes, however, more than one such set  of displacements w i l l  exist. 

An vanishes i s  the  lowes t  buckling 

A proof w i l l  now be given of the f a c t  t ha t  i n  general a t  the lowest 
buckling load the  las t  main-diagonal element of the auxi l iary matrix of 
the method f o r  evaluating determinants given i n  reference 3 i s  equal . to  
zero. Let the  symbol A i  stand f o r  the determinant 

all a12 * ali 

a21 a22 a2i 
(A3) 

The value of t h i s  determinant i s  equal t o  the  product of t he  f i r s t  i main- 
diagonal t e r m s  of the  auxi l iary matrix. 
denoted by the symbol a i j ,  then 

If auxiliary-matrix elements a re  

A i  = f a j j  = all a22 akk . a i i  (A4 1 
j =1 

L e t  
of reference 2 gives 

Ak be the  f irst  of these determinants t o  vanish; then theorem 2 

where A, i s  the  determinant given i n  equation ( A 2 ) .  Two cases may 
then be considered: 

Case 1; k = n.- In  the case where k = n, An i s  the  only one of 
these determinants which vanishes. By equation ( A b )  the  only f ac to r  
which i s  contained i n  An and i n  no other A i  determinant i s  ann, 
which, as w a s  t o  be proved, must therefore vanish. 

Case 2; k < n.- I n  the case where k < n, the method of reference 3 
f a i l s  t o  give any terms beyond ukk, which of course i s  zero. Here a, 
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A t =  

i s  obviously not the f irst  term t o  vanish, but i n  t h i s  case several  of 
the higher buckling loads a re  ident ica l  with the first.  
expected t o  occur ra ther  infrequently. 

This case i s  

The Energy Method of reference 2 i s  based on the condition tha t  the 
second variation of the t o t a l  potent ia l  energy must vanish a t  buckling. 
This condition may be writ ten as 

. . . . . . . ' .  . . * .  . . . . . . 
ap-1,1 ap-1,2 * * * "p-1,p-1 a'p-1,p 

a'PYl PY2. a '  P,P+ PYP a t  . . .at 

This equation i s  sa t i s f i ed  a t  buckling by the buckling displacements. 
In . the  Energy Method some of these displacements, say xp, xp+l, - 0 ,  

xn, are guessed; then the others are  obtained from the conditions 

% = O  k = l ,  2 , .  . ' Y P - 1  
axk 

The matrix of the coefficients of these simultaneous equations, including 
the constant terms, i s  the reduced matrix A , where: 

i n  which 

It will now be proved tha t  the Determinant Method may be applied t o  the 
operations table  of equation ( A 8 ) .  
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A l l ,  l e s s  
than zero 

Varying; none, 
zero 

All, greater 
than zero 

Some, zero; a l l  
others, negative 

It i s  well-known (see reference 15) t ha t  any quadratic form Q 
put i n  the form 

may be 

n 

(A9 1 

Q < 0 always Negative def ini te  
(Q = o i f  x- 0 )  nonsingdar 

negative, o r  zero nonsingular 

J 

Q may be positive, Indefini te  

Q > 0 always Positive def in i te  
( Q  = 0 i f  Xj 0 )  nonsingular 

Q = 0 o r  Negative def in i te  
Q < 0 singular 

where the b i  quant i t ies  are constants, and 

Some, zero; 
others, varying 

n 

j =1 
L i  => C jXj 

may be positive, Indefini te  singular negative, o r  zero ' 

where the c j  quant i t ies  are  constants. 
n l inear ly  independent quant i t ies  L i .  This assumption en ta i l s  no l o s s  
of generality since i n  the  case i n  which it i s  not' t rue  some of the 
constants b i  w i l l  be zero. 

It i s  assumed tha t  there a re  

By means of equation ( A 9 )  and table  2 of reference 2 the following 
tab le  may be s e t  up: 

Some, zero; a l l  
others, positive 

I I 

Q = 0 o r  Positive def ini te  
Q > 0 singular 

Sign of b i  I Sign of Q IClassification of Q 
I I 

I I 
I 

Type of 
3quilibrium 

Stable 

Unstable 

Unstable 

Neutral 

Unstable 

Unstable 
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Two conditions f o r  neutral  equilibrium have been thus set up: 

(1) The vanishing of the  determinant An of the  quadratic form Q 

(2) The f a c t  t h a t  some of the  bits equal zero, while a l l  others 
are negative 

A s  both conditions are necessary and suf f ic ien t ,  they are  equivalent and 
may be used interchangeably. 

When some of the  displacements are  guessed as previously explained, 
the quadratic form Q becomes the  reduced quadratic f o r m  & I ,  where 

P 

i=l 
Q' = bii ' (Li i ' )*  

where the  b i t  quant i t ies  are constants and 

P-1 
Lit = c 1 + 

C j ' X j  
j =1 P 

The statements of the  above,table my now be applied t o  the  quadratic 
form Q', since Q' i s  the  value the quadratic form Q will take on 
when the  displacements xp, . . ., Xn. are assumed. Neutral equilibrium 
w i l l  then exist when some of  t he  b i t s  are zero and a l l  others a re  neg- 
a t ive.  
nant corresponding t o  the quadratic form Qi' must vanish. This determinant 
i s  obtained by multiplying out t h e  right-hand side of equation ( A l l )  and 
expFessing the l e s u l t  i n  the  f o r m  

But t h i s  condition i s  equivalent t o  the  condition tha t  the determi- 

The determinant corresponding t o  QI w i l l  then be seen t o  be ident ica l  
with A '  of equation (AB) .  

It therefore follows t h a t  the vanishing of the determinant A' of 
If the displacements equation ( A 8 )  corresponds t o  neutral  equilibrium. 

the s t ructure  a t  buckling, an approximate value of the,buckling load w i l l  
be obtained rather  than an exact one. 
t h i s  approximate load w i l l  be higher than the  actual one. 

- 0 ,  xn were not chosen exactly equal t o  the  displacements of xP, 

It was proved i n  reference 2 t h a t  
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APPENDIX B 
1 

GENERAL FORMULAS AND NUMERICAL EXAMPLE 

I n  t h i s  appendix i s  presented the procedure f o r  the  determination 
of the  influence coeff ic ients  required i n  se t t i ng  up the  operations 
tables  I1 and 111. Since many of the formulas used i n  the analysis are 
scattered throughout the l i t e r a tu re ,  some of these are  given here, 
together with appropriate reference. When a formula i s  not l i s t ed ,  refer- 
ence t o  i t s  source i s  given. 
t r a t ing  both methods sugge,sted f o r  the calculation of the buckling loads 
of cylinders without cutout. 

A numerical example i s  a l so  given i l l u s -  

Influence Coefficients 

The operations tab les  ( tables  I1 and 111) contain three types of 
influence coefficients,  which represent the  e f fec ts  of the rings,  the 
sheet covering, and the  s t r ingers .  The methods by which each type i s  
determined are  outlined below. 

Ring influence coefficients.-  The r ing influence coefficients a re  
characterized by the symbol -, as, f o r  example, rrM, r t M ,  o r  tnF. 
These coefficients may be determined from reference 11, i n  which they 
may be seen t o  depend on the three parameters $, y ,  and E ,  where p 
i s  the central  angle of the ring segment, and y and !5 are  defined i n  
equations (7) .  
calculation of these coeff ic ients : .  

n n n 

Any one of the three following ways may be used f o r  the 

(1) General formulas a re  given i n  equations (20), (27) ,  (28), and 
(29) of reference 11. A s  an #example, the formula f o r  r t ~  i s  repeated 
here with a s l i gh t  change i n  notation: 

where 
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and 

i n  which the quant i t ies  f are functions of the central  angle p and 
are given i n  reference 11 by equations (24) and, f o r  specif ic  values 
of p, by table  I1 and f igures  3 t o  13. 

( 2 )  Influence coeff ic ients  obtained from the formulas  mentioned 
under i t e m  (1) are tabulated in- tables  I11 and I V  of reference 11 f o r  
specific values of the parameters B y  y ,  and 6. 

(3) From the tabulated values mentioned i n  item ( 2 )  above, curves 
were plotted which are  presented i n  f igures  14 t o  85 of reference 11. 
It should be noted t h a t  i n  general these curves are  accurate only f o r  
values of p 2 150. 

Sheet influence coefficients.-  The shear i n  the sheet covering i s  
represented by the influence coefficients containing the quant i t ies  a 
and AI, as, f o r  example, 2ar2A1 o r  2atu&1 dI. The quant i t ies  a 

may be determined i n  good approximation from the formulas 

(B2 1 

ar = 0. lg  

at = -0.5(1 - 0.01666 - * p2) 

an = -0.008333 p(1 + 0.014286p2) 

taken from page 27 of reference 11. 
reference a,, a t ,  and an are  denoted as rq/(Lq), tq/(Lq), and 
%/(L2q), respectively. 

It should be noted t h a t  i n  t h i s  

The quantity AI i s  given by 

where the effect ive shear modulus 
present report. 

Geff i s  given by equation (8) of the 
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The buckling s t r a i n  6cr of a sheet panel appearing i n  t h i s  equa- 
t i o n  w a s  obtained by means of Redshawls formula: 

where 

€ f l a t  = 

2 \jpf 1at/2) + (“curved) 

kfn2 

1 2 ( 1  - v2) 

as shown i n  reference 16, i n  which k 1  i s  
V i s  Poisson’s r a t i o ,  and 

the end-fixity coefficient,  

- 0 .6 ( t / r )  1 - 1 . 7  x 1 0 - 7 ( ~ / t ) ~  
1 + 0.004(E/Fcy) ‘curved. - 

as shown i n  reference 1 7 ,  i n  which F i s  the  y ie ld  s t r e s s  of the 
material. 

CY 

The e f fec t  of normal s t resses  i n  the sheet covering i s  txken in to  
account by an effect ive width of sheet as  discussed i n  the next section. 

Stringer beam-column influence coefficients.- The beam-column 
ef fec ts  i n  the s t r ingers  are  represented by the influence coefficients 
containing the load P, as, f o r  example, (P/D1)(1 - c )  or Pks/D1. 
A complete l i s t  of beam-column influence coeff ic ients  i s  presented i n  
tables  V I ,  VII, and VI11 i n  which the sign convention as  well as defi- 
ni t ions of symbols a re  given. All these coeff ic ients  are functions of 
the quantity k defined i n  equation ( 2 ) .  The following formula which 
w a s  derived i n  reference 18 on the basis of work contained i n  reference 1 9  
i s  suggested f o r  the calculation of the e f fec t ive  width 2w: 

If the load P causes a s t r inger  stress which i s  higher than the  
proportional l i m i t  of the  material, the  modulus of e l a s t i c i t y  E which 
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appears i n  equakion (2) yust be reduced i n  an appropriate manner. 
t h i s  invest igat ion Von K a d n l s  formula w a s  used: 

I n  

where E t  i s  the tangent modulus. 

Numerical Example 

A s  an example of t he  application of the  methods suggested f o r  the 
calculation of t h e  buckling load of cylinde-rs without cutout the buckling 
load i s  determined here f o r  GALCIT cylinder 65 of reference 8. 
charac te r i s t ics  of t h i s  cylinder a re  given i n  f igure  1. 
readi ly  s e t  up with t h e  a id  of these charac te r i s t ics  and the  equations 
l i s t e d  i n  the  previous section. 
fo r  tab les  I1 o r  I11 can then be calculated.  

The 
Table I i s  

The influence coeff ic ients  required 

Ring influence coefficients.-  The values of the  r ing influence 
coeff ic ients  corresponding t o  PI, yI, and 5, (see tab le  I )  happen 
t o  appear i n  tab les  I11 of reference 11. However, since these tables  
do not contain coeff ic ients  corresponding t o  
use values interpolated f romthe  appropriate curves of reference 11. 
The following values were obtained for the  r ing influence coefficients:  

E,,, it i s  necessary t o  

Ring segment I Ring segment I1 

rnMI p2) EI, = -20.38 

tnMI A (dlz) EI, = 109.0 

-1 p3) EI, = 98.43 

6h M I 1  jdII) iG = 8.65 

sMII(g) = -33 .O 

= 33.0 
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P 
O b )  

1550 

- t r M I  (dip) EI, = -656.6 

Ered Istrr k kL s i n  kL cos kL 
CT Ered 

(Psi) (Psi)  

37,300 7.056 x lo6 4000 0.6225 2.490 0.60646 -0.79511 
L 

= 4999 

21 

A (9) = -8.531 
rnFI EI, 

1"3 EI, = 74.86 

tr A p) = -659.7 
'I E I r  

Sheet influence coefficients.-  The quant i t ies  a of equation (B2) 
have the following values: 

Bay I Bay I1 

ar = 0.0261 

= -0.499 

No sheet i n  t h i s  bay 

= -0.00218 
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The beam-column influence coeff ic ients  required f o r  tab le  I1 are 
then 

- -  pks - 281.31 
D1 

= 2254.6 
kDi 

-L 

NO beam-column influence coefficients need be calculated if table  111 
and f igure  3 are used. 

Calculation of buckling load by tab le  11.- The state of s t a b i l i t y  
of t he  s t ructure  a t  a load of P = 1550 pounds may now be investigated 
by introducing a l l  t he  above influence coeff ic ients  i n t o  t ab le  I1 and 
evaluating the  corresponding determinant. The results corresponding t o  
the assumed load of 1550 pounds, as well as those f o r  the  loads of 1650, 
1680, and 1715 pounds, are presented i n  f igure 5. I n  t h i s  f igure  are 
plot ted both the values of the determinant and the  values of the las t  
main-diagonal t e r m  am of the  auxi l iary matrix of reference 3. The 
intercept  of the curves i n  t h i s  f igure  may be read o f f  and corresponds 
t o  the  buckling load. It should be noted t h a t  only the s t r inger  beam- 
column influence coeff ic ients  vary as the assumed load i s  changed. 

Calculation of buckling load by table  111.- The value of the  
quantity K 
be -5.472. 
kL = 3.4, from which 
reduced modulus (equation (B8))- be used i f  the stress at  buckling is  
above the  proportional l imit .  

of equation (3) was found by the  method of  reference 3 t o  
From f igure  3, t h i s  value may be seen t o  correspond t o  

Pcr = 1730 pounds. Care must be taken t h a t  a 
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APPE~DIX c 

SYMBOLS 

A13 A 2 y  * determinants o r  matrices 

Ai:, An 

effect ive cross-sectional area of s t r inger  

effect ive cross-sectional area of r ing 

Aeffs t r  

A, 

Ar * 

A’ 

effect ive shear area of ring cross section 

reduced matrix 

A, BY CY D rings 

E Young s modulus 

(E1 1 r 

(‘1 ) s t rr 

bending r ig id i ty  of a ring i n  i t s  own plane 

radial bending r ig id i ty  of s t r inger  and i t s  
effect ive width- of sheet 

reduced modulus Ere d 

E t  tangent modulus 

*CY 

F i  

yield-point s t ress  

generalized external force 

Gef f effect ive shear modulus 

Ir 

reduced effect ive shear modulus 

shear modulus of sheet material under no com- 
pressive load 

moment of i n e r t i a  of ring cross section plus 
effect ive width 
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Istrr moment of i n e r t i a  of s t r inger  plus effective width of 
sheet f o r  radial bending 

K constant 

L r ing spacing 

L i  

L ~ / D  

l i nea r  function 

r a t i o  of t o t a l  cylinder length t o  cylinder diameter 

moment causing bending of s t r inger  (vector pointing 
i n  tangent ia l  direct ion)  

0.0275 [(2nr/d) + l] 

M t  

N moment causing bending of r ing i n  i t s  plane; a lso 

P axial s t r inger  load 

Pcr load i n  the  most highly compressed s t r inger  a t  the  ins tan t  
of buckling 

Q 

Q' 
R 

quadratic form 

reduced quadratic f o r m  

r ad ia l  force  

T tangent ia l  force 

a i j  element of operations tab le  

a ' i p  

b i ,  bi' constants 

element of last  row o r  column of reduced matrix 

const ants 
'j, 'j' 

d circumferential s t r inger  spacing 

f function of p 

f(kL) function of kL 

i, j indices 
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e 

k‘ 
, 

mt 

n 

P 

r 

rr, rm, rt, 
and so f o r t h  

n n n  

t 

2w 

X 

Y 

E 

‘cr 

‘curved 

end-fixity coefficient 

ro ta t ion  causing bending of s t r inger  (vector pointing 
i n  tangential  direction) 

number of s t r ingers;  number of generalized displacements; 
rotat ion causing bending of r ing i n  i t s  plane 

index 

radius; rad ia l  displacement 

ring influence coeff ic ients  

sheet thickness; tangential  displacement 

effect ive width of sheet 

longitudinal axis of s t r inger  

generalized displacement 

parameter 

parameter 

awriliayy-matrix element 

l a s t  main-diagonal element of auxiliary matrix 

functions of $ required f o r  sheet influence 
coeff ic ients  

central  angle of a ring segment (d/r) 

parameter; shear s t r a i n  

s t r a i n  i n  most highly compressed s t r inger  at f a i lu re  

buckling s t r a i n  of a sheet panel 

buckling s t r a i n  of nonreinforced c i rcu lar  cylinder 
under uniform axia l  compression 
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‘flat buckling s t r a i n  of f l a t  panel under uniform compression 

V Poisson’s r a t i o  

f parameter 

CT compressive s t r inger  s t r e s s  

z shear s t r e s s  

Subscripts: 

F f ixed 

M movable 

av average 

exp experiment 

1, 2, 3 s t r ingers  

I, I1 regions 
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re 

TABLE I V  

0.031250 

COMPARISON OF CALCULATED AND EXPERIMENTAL BUCKLING LOADS 

0.48713 

Method of 
calculation (percent) 

Table II 955 . 24.2 

Cylinder 

GALCIT 25 

GALCIT 65 Table I1 I 1670 I 1371 I 21.8 

GALCIT 65 Tab3e I11 1730 1371 26.2 

Table I1 4850 3754 29.2 PIBAL 10 

TABLE V 

ASSUMED, CALCULATED, AND EXPERIMENTAL DEFLECTED SHAPES 

[For sign convention and nomenclature see f ig .  2 1  

1 1 0.22672(1/L) sin4(%) I 0.06250 I 0.56250 

sin5 (g) 
1 1 O.O85020(1/L) si&( E) 1 0.015625 1 0.42188 I 0.76520(1/L) 

I 
0.80011(1/L) I ’IBAL 1 -0.016949 I 0.50229 (Calculated) 1 I 0.15086(1/L) 

1 I O.O93608(1/L) 25 I 0.066323 I 0.48355 (Calculated) 0.82808 (1JL) I 
GALclT cy1* 65 1 -0.16089 1 0.30640 
(Calculated) 

I 0.667 GALCIT cyl. 25 o.222 
(Experimental) 

GALCIT cyl. 27 
(Experimental) I 0*0370 I 0‘204 

I I 

cy’. 30 1 0.0588 I 0.4l.2 (ExperkntaJ.) 

1 0.446 (Experimental) 
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TABLE VI 

BEAM-COLUMN INFLUENCE COEFFICIENTS 

 ompr press ion] 

Forces 

Unit Displacement 
FA 

Both ends 
f ixed 

1 - c  -P - 
D1 

ks P -  
D 1  

P- 1 - c  1 -pa: 1 p- 1 - c  
D 1  D 1  I 6B 

1 - c  -P - 
D1 

End A 
f ixed 

k -P - 
t D 2  

I -P - 
D2 End B 

pin- 
jointed k P -  

tD2 
0 1 k P - 3  

D2 

I 6A 
Both 
ends 
pin- 

jointed bg P 
L 

- -  

1% = 2 ( 1  - c )  - kLs s = s i n  kL 
D2 = 1 - (kL/t) 

k2 = P/EI 

c = cos kL 
t = t a n k L  

Sign convention 
Forces on constraints 

X 

Q-----) 
P -  

A B 

P, posit ive as sham 



\ 

E 1  -6 - 
L2 

L3 

L2 

E 1  -3 - 

E 1  -3 - 

NACA TN 235'4 . 

E 1  -4 y- E 1  6- E 1  -2 - 
L L2 

L2 L 3  

L L2 

0 E 1  3 -  E 1  -3 - 

0 E 1  3 -  E 1  -3 - 

TABLE V I 1  

BEAM-C OL UMN INFLUENCE COEFFICIENTS 

[ A x i a l  end load P equal ;to zero] 

Displacement 

mA 

6B 

mB 

6A 

mA 

6B 

6B 

X 

Unit 

Both ends 
fixed 

End A 
fixed 

End B 
pin- 

jointed 

Both 
ends 
pin- 

j oint ed 

Forces 
I I I 

-12 - E 1  1-6: 1 12: 1-6- E 1  

L 3  L2 
I I I 

6- E 1  EI -12 - 
L 3  

E 1  1 2  - 

I 
I 

I 
I 

I 

Sign convention 
Forces on constraints 
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TABLE VI11 

BEAM-COLUMN INFLUENCE COEFFICIENTS 

Displacement unit  

FA FB I MB MA 

Both ends 
fixed 6A 

(c'  - 1) 

D 1 '  
-P 

I 

( c '  - 1) -P 
D 1! 

k -P - 
t ' D 2 '  

1 -P - 
D 2 '  

0 End A 
f ixed 

P A  j 0 
D2' End B 

pin- 
jointed 0 k P- 

t ' D 2 '  
k 1 P -  

D 2 '  

Both 
ends 
pin- 

jointed 

P 
L 

- -  - 
L O 6A 0 

0 
P - 6B L 

= 2(1 - c ' )  + kLs' 
D 2 '  = (kL/t) - 1 

k2 = P/EI 

s f  = sinh ICL 
c1 = cash kL 
t l  = tanh kL 

Sign convention 
Forces on constraints 

I 
X 

o------) 
P e  A rL+ B ~ P 

P, positive as shown 



36 NACA TN 2354 

24s -T36 
alclad 

" 

Stringer ; 
17s -T4 

3 
t-5lAl I t  

-7, Ring; 
24s -T4 PIBAL cylinder 10 

I I I I I I I 

I I 

I I 
I 

I 
I 

I 
I 

1 
I 

I 
I 

1 

Cylinders 25 and 65 
0.420 I' 

0,028 " 
Stringer; t 
175 -T 
0.366 It 

Rinn : l  
n_t 0.0796 

17s IT 

GALCIT cylinder 25 

t = 0.010" 

t = 0.010" 

I 

GALCIT cylinder 65 

Figure 1.- Cylinder characteristics. . 
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1 

Q 

convention 

Section A-A 

Figure 2.- Simplified structure for  setup of operations tables. 
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kL 

sin kL - 0.44020 cos kL kL Figure 3.- Plot of f(kL) against kL. f(kL) = 

- 0.47180kL sin kL + 1.3561 . 

. 
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0 200 400 600 800 1000 
P, lb 

Figure 4.- Determination of buckling load of GALCIT cylinder 25 for two, four, 
six, and eight bays. 

.04 

0 

. 
-.04 

-.08 

Figure 5.- Determination of buckling load of GALCIT cylinder 65 by table 11. 

P, l b  

Figure 6.- Determination of buckling load of PIBAL cylinder 10 by table 11. 
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NACA TN 2354 

Figure 7.- Experimental variation of kL with parameters A and r . 
r/d = 6.32. Value of r given for  plotted points. 
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-qxzJ7 
Figure 9.- Side view of PIBAL cylinder 82 after buckling. 
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